Lead optimization of dual tubulin and Hsp27 inhibitors.

نویسندگان

  • Bo Zhong
  • Rati Lama
  • Daniel G Kulman
  • Bibo Li
  • Bin Su
چکیده

Tubulin and heat shock protein 27 (Hsp27) are well-characterized molecular targets for anti-cancer drug development. We previously identified lead compounds that inhibited both Hsp27 and tubulin. These compounds exhibited extensive anti-cancer activities against the proliferation of various human cancer cell lines. In the current study, a systematic ligand based structural optimization led to new analogs that significantly inhibited the growth of a panel of breast cancer cell lines. Furthermore, the most potent compounds were examined with tubulin polymerization assay and Hsp27 chaperone activity assay. The compounds showed potent tubulin polymerization inhibition but no Hsp27 inhibitory effect. The structural optimization dissected the dual activity and improved the selectivity of the compounds for tubulin. The results revealed several structural moieties of the lead compounds that are critical for Hsp27 inhibition. The modification of these structural fragments eliminated Hsp27 inhibition, but did not harm tubulin-targeting effects of the compounds. This result further defined the structure-activity relationship between the tubulin and Hsp27 effects of these compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Silico Screening Studies on Methanesulfonamide Derivatives as Dual Hsp27 and Tubulin Inhibitors Using QSAR and Molecular Docking

The expression of heat shock protein 27 (Hsp27) as a chaperone protein, is increased in response to various stress stimuli such as anticancer chemotherapy. This phenomenon can lead to survive of the cells and causes drug resistance. In this study, a series of methanesulfonamide derivatives as dual Hsp27 and tubulin inhibitors in the treatment of cancer were applied to quantitative structure–act...

متن کامل

Design, Synthesis and Cytotoxicity Evaluationof New 1,2-diaryl-4, 5, 6, 7-Tetrahydro-1H-benzo[d] Imidazolesas Tubulin Inhibitors

A new series of 1,2-diaryl-4,5,6,7-tetrahydro-1H-benzo[d]imidazoles, possessing trimethoxy phenyl pharmacophore, were synthesized to evaluate their biological activities as tubulin inhibitors. Cytotoxic activity of the synthesized compounds 7a-f was assessed against several human cancer cell lines, including MCF-7 (breast cancer cell), HEPG2 (liver hepatocellular cells), A549 (adenocarcinomic h...

متن کامل

O-12: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

I-16: Tubulin Reversible Acetylation – Driving The Moves and The Moves Behind The Drive

Background Asthenozoospermia accounts for almost 50% of the cases of male infertility. Our study investigating phosphoproteins differentially expressed in asthenozoosperm has identified the phosphoproteins relevant to sperm motility and the signature molecules likely to be altered in asthenozoospermia. The 66 phosphoproteins differentially expressed included four alpha tubulin isoforms which we...

متن کامل

MT-4 Suppresses Resistant Ovarian Cancer Growth through Targeting Tubulin and HSP27

OBJECTIVE In this study, the anticancer mechanisms of MT-4 were examined in A2780 and multidrug-resistant NCI-ADR/res human ovarian cancer cell lines. METHODS To evaluate the activity of MT-4, we performed in vitro cell viability and cell cycle assays and in vivo xenograft assays. Immunoblotting analysis was carried out to evaluate the effect of MT-4 on ovarian cancer. Tubulin polymerization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European journal of medicinal chemistry

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2014